Competitive algorithms for multistage online scheduling
نویسندگان
چکیده
We study an online flow shop scheduling problem where each job consists of several tasks that have to be completed in t different stages and the goal is to maximize the total weight of accepted jobs. The set of tasks of a job contains one task for each stage and each stage has a dedicated set of identical parallel machines corresponding to it that can only process tasks of this stage. In order to gain the weight (profit) associated with a job j, each of its tasks has to be executed between a task-specific release date and deadline subject to the constraint that all tasks of job j from stages 1, . . . , i − 1 have to be completed before the task of the ith stage can be started. In the online version, jobs arrive over time and all information about the tasks of a job becomes available at the release date of its first task. This model can be used to describe production processes in supply chains when customer orders arrive online. We show that even the basic version of the offline problem with a single machine in each stage, unit weights, unit processing times, and fixed execution times for all tasks (i.e., deadline minus release date equals processing time) is APX-hard. Moreover, we show that the approximation ratio of any polynomialtime approximation algorithm for this basic version of the problem must depend on the number t of stages. For the online version of the basic problem, we provide a (2t−1)-competitive deterministic online algorithm and a matching lower bound. Moreover, we provide several (sometimes tight) upper and lower bounds on the competitive ratio of online algorithms for several generalizations of the basic problem involving different weights, arbitrary release dates and deadlines, different processing times of tasks, and several identical machines per stage.
منابع مشابه
Online Scheduling of Jobs for D-benevolent instances On Identical Machines
We consider online scheduling of jobs with specic release time on m identical machines. Each job has a weight and a size; the goal is maximizing total weight of completed jobs. At release time of a job it must immediately be scheduled on a machine or it will be rejected. It is also allowed during execution of a job to preempt it; however, it will be lost and only weight of completed jobs contri...
متن کاملScheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms
This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...
متن کاملA Mathematical Model and Grouping Imperialist Competitive Algorithm for Integrated Quay Crane and Yard Truck Scheduling Problem with Non-crossing Constraint
In this research, an integrated approach is presented to simultaneously solve quay crane scheduling and yard truck scheduling problems. A mathematical model was proposed considering the main real-world assumptions such as quay crane non-crossing, precedence constraints and variable berthing times for vessels with the aim of minimizing vessels completion time. Based on the numerical results, thi...
متن کاملThe project portfolio selection and scheduling problem: mathematical model and algorithms
This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialis...
متن کاملSeparating online scheduling algorithms with the relative worst order ratio
The relative worst order ratio is a measure for the quality of online algorithms. Unlike the competitive ratio, it compares algorithms directly without involving an optimal offline algorithm. The measure has been successfully applied to problems like paging and bin packing. In this paper, we apply it to machine scheduling. We show that for preemptive scheduling, the measure separates multiple p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 260 شماره
صفحات -
تاریخ انتشار 2017